YoVDO

Computational Number Theory and Algebra

Offered By: Indian Institute of Technology Kanpur via Swayam

Tags

Number Theory Courses Computer Science Courses Algebra Courses

Course Description

Overview

Algebra plays an important role in both finding algorithms, and understanding the limitations of computation. This course will focus on some of the fundamental algebraic concepts that arise in computation, and the algebraic algorithms that have applications in real life. The course will cover the problems of fast integer (or polynomial) multiplication (or factoring), fast matrix multiplication, primality testing, computing discrete logarithm, error-correcting codes, lattice- based cryptography, etc. The course intends to introduce both basic concepts and practical applications.

INTENDED AUDIENCE :Computer Science & Engineering, Mathematics, Electronics, Physics, & similar disciplines.
PREREQUISITES :Preferable (but not necessary)-- Theory of Computation, Algorithms, Algebra
INDUSTRIES SUPPORT :Cryptography, Coding theory, Computer Algebra, Symbolic Computing Software, Cyber Security, Learning Software

Syllabus

COURSE LAYOUT

Week 1:Outline. Notation. Background.Week 2:GCD. Chinese remaindering. Fast polynomial multiplication.Week 3:Fast integer multiplication. Fast integer division. Fast gcd.Week 4:Fast matrix multiplication. Tensor rank.
Week 5:Factorization over finite fields.Week 6:Berlekamp, Cantor-Zassenhaus factoring algorithms.Week 7:Reed-Solomon code. List decoding. Bivariate polynomial factoring.Week 8:Kaltofen's blackbox multivariate factoring.
Week 9:Integral polynomial factoring. LLL algo. Shortest vector in lattice.Week 10:Lattice-based cryptography.Week 11:Primality testing. RSA cryptosystem. Diffie-Hellman. Discrete Log.Week 12:Integer factoring. Pollard, Fermat, Morrison-Brillhart, Quadratic sieve methods.

Taught by

Prof. Nitin Saxena

Tags

Related Courses

Introduction to Mathematical Thinking
Stanford University via Coursera
Effective Thinking Through Mathematics
The University of Texas at Austin via edX
Cryptography
University of Maryland, College Park via Coursera
Математика для всех
Moscow Institute of Physics and Technology via Coursera
Number Theory and Cryptography
University of California, San Diego via Coursera