YoVDO

Simple Nearest Neighbors Regression and Classification

Offered By: Coursera Project Network via Coursera

Tags

TensorFlow Courses Python Courses Predictive Analytics Courses Classification Courses

Course Description

Overview

In this 2-hour long project-based course, we will explore the basic principles behind the K-Nearest Neighbors algorithm, as well as learn how to implement KNN for decision making in Python. A simple, easy-to-implement supervised machine learning algorithm that can be used to solve both classification and regression problems is the k-nearest neighbors (KNN) algorithm. The fundamental principle is that you enter a known data set, add an unknown data point, and the algorithm will tell you which class corresponds to that unknown data point. The unknown is characterized by a straightforward neighborly vote, where the "winner" class is the class of near neighbors. It is most commonly used for predictive decision-making. For instance,: Is a consumer going to default on a loan or not? Will the company make a profit? Should we extend into a certain sector of the market? Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

Syllabus

  • Simple Nearest Neighbors Regression and Classification
    • In this 2-hour long project-based course, we will explore the basic principles behind the K-Nearest Neighbors algorithm, as well as learn how to implement KNN for decision making. A simple, easy-to-implement supervised machine learning algorithm that can be used to solve both classification and regression problems, the k-nearest neighbors (KNN) algorithm can be used for a variety of prediction problems. The fundamental principle is that you enter a known data set, add an unknown data point, and the algorithm will tell you which class corresponds to that unknown data point. The unknown is characterized by a straightforward neighborly vote, where the "winner" class is the class of near neighbors. It is most commonly used for predictive decision-making.

Taught by

Charles Ivan Niswander II

Related Courses

Artificial Intelligence for Robotics
Stanford University via Udacity
Intro to Computer Science
University of Virginia via Udacity
Design of Computer Programs
Stanford University via Udacity
Web Development
Udacity
Programming Languages
University of Virginia via Udacity