Simple Nearest Neighbors Regression and Classification
Offered By: Coursera Project Network via Coursera
Course Description
Overview
In this 2-hour long project-based course, we will explore the basic principles behind the K-Nearest Neighbors algorithm, as well as learn how to implement KNN for decision making in Python.
A simple, easy-to-implement supervised machine learning algorithm that can be used to solve both classification and regression problems is the k-nearest neighbors (KNN) algorithm. The fundamental principle is that you enter a known data set, add an unknown data point, and the algorithm will tell you which class corresponds to that unknown data point. The unknown is characterized by a straightforward neighborly vote, where the "winner" class is the class of near neighbors. It is most commonly used for predictive decision-making. For instance,:
Is a consumer going to default on a loan or not?
Will the company make a profit?
Should we extend into a certain sector of the market?
Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.
Syllabus
- Simple Nearest Neighbors Regression and Classification
- In this 2-hour long project-based course, we will explore the basic principles behind the K-Nearest Neighbors algorithm, as well as learn how to implement KNN for decision making. A simple, easy-to-implement supervised machine learning algorithm that can be used to solve both classification and regression problems, the k-nearest neighbors (KNN) algorithm can be used for a variety of prediction problems. The fundamental principle is that you enter a known data set, add an unknown data point, and the algorithm will tell you which class corresponds to that unknown data point. The unknown is characterized by a straightforward neighborly vote, where the "winner" class is the class of near neighbors. It is most commonly used for predictive decision-making.
Taught by
Charles Ivan Niswander II
Related Courses
Artificial Intelligence for RoboticsStanford University via Udacity Intro to Computer Science
University of Virginia via Udacity Design of Computer Programs
Stanford University via Udacity Web Development
Udacity Programming Languages
University of Virginia via Udacity