Pneumonia Classification using PyTorch
Offered By: Coursera Project Network via Coursera
Course Description
Overview
In this 2-hour guided project, you are going to use EfficientNet model and train it on Pneumonia Chest X-Ray dataset. The dataset consist of nearly 5600 Chest X-Ray images and two categories (Pneumonia/Normal). Our main aim for this project is to build a pneumonia classifier which can classify Chest X-Ray scan that belong to one of the two classes. You will load and fine tune the pretrained EffiecientNet model and also to create a simple pytorch trainer to train the model.
In order to be successful in this project, you should be familiar with python, convolutional neural network, basic pytorch. This is a hands on, practical project that focuses primarily on implementation, and not on the theory behind Convolutional Neural Networks.
Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.
Syllabus
- Project Overview
- In this project, you are going to use EfficientNet model and train it on Pneumonia Chest X-Ray dataset. The dataset consist of nearly 5600 Chest X-Ray images and two categories (Pneumonia/Normal). Our main aim for this project is to build a pneumonia classifier which can classify Chest X-Ray scan that belong to one of the two classes. You will load and fine tune the pretrained EffiecientNet model and also to create a simple pytorch trainer to train the model.
Taught by
Parth Dhameliya
Related Courses
Deep Learning with Python and PyTorch.IBM via edX Introduction to Machine Learning
Duke University via Coursera How Google does Machine Learning em Português Brasileiro
Google Cloud via Coursera Intro to Deep Learning with PyTorch
Facebook via Udacity Secure and Private AI
Facebook via Udacity