KI und Datenqualität - Perspektiven aus Data Science, Ethik, Normung und Recht
Offered By: openHPI
Course Description
Overview
Künstliche Intelligenz beruht auf Verfahren des maschinellen Lernens, die mit großen Datenmengen trainiert werden. Viele der KI-Methoden, die seit Ende der 1950er Jahre erforscht werden, basieren vor allem auf manuell entwickelten Modellen und Regeln. Neuronale Netze jedoch, die seit 2006/07 technisch und seit 2011/12 auch in der breiten Anwendung zum jüngsten Durchbruch von KI und maschinellem Lernen geführt haben, sind auf große Mengen passender Trainingsdaten zwingend angewiesen. Auch die Bundesregierung betont in ihrer nationalen Strategie für Künstliche Intelligenz die große Bedeutung von Trainingsdaten.
Wie kommt man an gute, also qualitativ hochwertige Trainingsdaten? Das ist die große Frage, die wir uns stellen müssen, wenn wir gesellschaftlich verträgliche KI entwickeln wollen.
Dabei ist “Qualität” in einem weiten Sinn zu verstehen und umfasst sowohl informatische als auch juristische, ethische, normungstechnische und regulatorische Aspekte. Ziele wie “Diskriminierungsfreiheit”, „Diversität“ oder “Arbeitnehmerdatenschutz”, die für KI-Anwendungen angestrebt werden, wirken auch auf die Daten und Prozesse zurück, mit denen KI-Systeme zuvor trainiert wurden. Umgekehrt führen unvollständige, fehlerbehaftete, unpassende oder asymmetrische Trainingsdaten zu unsicheren Modellen und können so letztlich zu Fehlentscheidungen führen. Auch die rechtlichen Vorgaben für KI-Test-, Validierungs- und Trainingsdaten sowie deren Umsetzung in Normen und Standards sind noch weitgehend ungeklärt und damit Gegenstand von Wissenschaft und Forschung. In unserem Kurs “KI und Datenqualität” berichten Expertinnen und Experten aus den Bereichen Informatik, Recht, Ethik und Normung über diese vielfältigen Aspekte der Daten für die Künstliche Intelligenz. Die Dozenten dieses Kurses forschen gemeinsam im Rahmen des KITQAR Projekts an dem Thema KI und Datenqualität.
Der Kurs richtet sich an die interessierte Öffentlichkeit, sowie an Praktiker und Praktikerinnen, die bei der Entwicklung und beim Einsatz von KI-Systemen nicht nur hohe Ergebnisqualität erzielen wollen, sondern auch Wert auf ethische und rechtliche Aspekte legen. Zur Teilnahme bestehen keine besonderen technischen Voraussetzungen – die relevanten KI-Grundlagen werden einführend erläutert.
Taught by
Prof. Dr. Felix Naumann, PD Dr. Jessica Heesen, Prof. Dr. dr Frauke Rostalski, Dr. Sebastian Hallesleben
Related Courses
Model ThinkingUniversity of Michigan via Coursera AP® Biology - Part 3: Evolution and Diversity
Rice University via edX Education for All: Disability, Diversity and Inclusion
University of Cape Town via FutureLearn Social Work Practice: Advocating Social Justice and Change
University of Michigan via edX Optimizing Diversity on Teams
University of Pennsylvania via Coursera