String Theory and Holographic Duality
Offered By: Massachusetts Institute of Technology via MIT OpenCourseWare
Course Description
Overview
Syllabus
1. Emergence of Gravity.
2. Classical Black Hole Geometry.
3. Causal Structure of a Black Hole and Black Hole Temperature.
4. Physical Interpretation of Black Hole Temperature.
5. Black Hole Thermodynamics.
6. Holographic Principle.
7. Structure of Large N Expansion.
8. Large N Expansion as a String Theory, Part I.
9. Large N Expansion as a String Theory, Part II.
10. Basics of String Theory and Light-cone Gauge.
11. String Theory in the Light-cone Gauge.
12. String Spectrum and Graviton.
13. Physics of D-branes, Part I.
14. Physics of D-branes, Part II.
15. Physics of D-branes, Part III.
16. Geometry of D-branes and AdS / CFT Conjecture.
17. More on AdS / CFT Duality.
18. General Aspects of the Duality.
19. Mass-dimension Relation.
20. Euclidean Correlation Functions: Two-point Functions.
21. Euclidean Correlation Functions: Higher-point Functions.
22. Computation of the Wilson Loop.
23. Duality at a Finite Temperature and Finite Chemical Potential.
24. Holographic Entanglement Entropy.
Taught by
Prof. Hong Liu
Tags
Related Courses
Networked LifeUniversity of Pennsylvania via Coursera Intro to Physics
Udacity How Things Work: An Introduction to Physics
University of Virginia via Coursera Solar: Solar Cells, Fuel Cells and Batteries
Stanford University via Stanford OpenEdx A Look at Nuclear Science and Technology
University of Pittsburgh via Coursera