Statistics for Applications
Offered By: Massachusetts Institute of Technology via MIT OpenCourseWare
Course Description
Overview
Syllabus
1. Introduction to Statistics.
2. Introduction to Statistics (cont.).
3. Parametric Inference.
4. Parametric Inference (cont.) and Maximum Likelihood Estimation.
5. Maximum Likelihood Estimation (cont.).
6. Maximum Likelihood Estimation (cont.) and the Method of Moments.
7. Parametric Hypothesis Testing.
8. Parametric Hypothesis Testing (cont.).
9. Parametric Hypothesis Testing (cont.).
11. Parametric Hypothesis Testing (cont.) and Testing Goodness of Fit.
12. Testing Goodness of Fit (cont.).
13. Regression.
14. Regression (cont.).
15. Regression (cont.).
17. Bayesian Statistics.
18. Bayesian Statistics (cont.).
19. Principal Component Analysis.
20. Principal Component Analysis (cont.).
21. Generalized Linear Models.
22. Generalized Linear Models (cont.).
23. Generalized Linear Models (cont.).
24. Generalized Linear Models (cont.).
Taught by
Prof. Philippe Rigollet
Tags
Related Courses
Statistical Inference and Modeling for High-throughput ExperimentsHarvard University via edX Estimation for Wireless Communications –MIMO/ OFDM Cellular and Sensor Networks
Indian Institute of Technology Kanpur via Swayam Обобщенные линейные модели
Saint Petersburg State University via Coursera Введение в теорию построения процедур множественной проверки гипотез
Higher School of Economics via Coursera Bayesian Statistics: Mixture Models
University of California, Santa Cruz via Coursera