Statistics for Applications
Offered By: Massachusetts Institute of Technology via MIT OpenCourseWare
Course Description
Overview
Syllabus
1. Introduction to Statistics.
2. Introduction to Statistics (cont.).
3. Parametric Inference.
4. Parametric Inference (cont.) and Maximum Likelihood Estimation.
5. Maximum Likelihood Estimation (cont.).
6. Maximum Likelihood Estimation (cont.) and the Method of Moments.
7. Parametric Hypothesis Testing.
8. Parametric Hypothesis Testing (cont.).
9. Parametric Hypothesis Testing (cont.).
11. Parametric Hypothesis Testing (cont.) and Testing Goodness of Fit.
12. Testing Goodness of Fit (cont.).
13. Regression.
14. Regression (cont.).
15. Regression (cont.).
17. Bayesian Statistics.
18. Bayesian Statistics (cont.).
19. Principal Component Analysis.
20. Principal Component Analysis (cont.).
21. Generalized Linear Models.
22. Generalized Linear Models (cont.).
23. Generalized Linear Models (cont.).
24. Generalized Linear Models (cont.).
Taught by
Prof. Philippe Rigollet
Tags
Related Courses
Regression Analysis for Statistics & Machine Learning in RPackt via Coursera Generalized Linear Models in Python
DataCamp Generalized Linear Models in R
DataCamp Multiple and Logistic Regression in R
DataCamp FA19: Statistical Modeling and Regression Analysis
Georgia Institute of Technology via edX