YoVDO

Transfer Learning for Images Using PyTorch: Essential Training

Offered By: LinkedIn Learning

Tags

Transfer Learning Courses Machine Learning Courses PyTorch Courses Image Processing Courses GPU Computing Courses Autograd Courses

Course Description

Overview

Discover how to implement transfer learning using PyTorch, the popular machine learning framework.

Syllabus

Introduction
  • Welcome
  • What you should know before watching this course
1. What Is Transfer Learning?
  • What is transfer learning?
  • VGG16
  • CIFAR-10 dataset
2. Transfer Learning: Fixed Feature Extractor
  • Creating a fixed feature extractor
  • Understanding loss: CrossEntropyLoss() and NLLLoss()
  • Autograd
  • Using autograd
  • Training the fixed feature extractor
  • Optimizers
  • CPU to GPU
  • Train the extractor
  • Evaluate the network and viewing images
  • Viewing images and normalization
  • Accuracy of the model
3. Fine-Tuning the ConvNet
  • Fine-tuning
  • Using fine-tuning
  • Training from the fully connected network onwards
  • Unfreezing and training over the last CNN block onwards
  • Unfreezing and training over the last two CNN block onwards
4. Further Techniques
  • Learning rates
  • Differential learning rates
Conclusion
  • Next steps

Taught by

Jonathan Fernandes

Related Courses

Structuring Machine Learning Projects
DeepLearning.AI via Coursera
Natural Language Processing on Google Cloud
Google Cloud via Coursera
Introduction to Learning Transfer and Life Long Learning (3L)
University of California, Irvine via Coursera
Advanced Deployment Scenarios with TensorFlow
DeepLearning.AI via Coursera
Neural Style Transfer with TensorFlow
Coursera Project Network via Coursera