Transfer Learning for Images Using PyTorch: Essential Training
Offered By: LinkedIn Learning
Course Description
Overview
Discover how to implement transfer learning using PyTorch, the popular machine learning framework.
Syllabus
Introduction
- Welcome
- What you should know before watching this course
- What is transfer learning?
- VGG16
- CIFAR-10 dataset
- Creating a fixed feature extractor
- Understanding loss: CrossEntropyLoss() and NLLLoss()
- Autograd
- Using autograd
- Training the fixed feature extractor
- Optimizers
- CPU to GPU
- Train the extractor
- Evaluate the network and viewing images
- Viewing images and normalization
- Accuracy of the model
- Fine-tuning
- Using fine-tuning
- Training from the fully connected network onwards
- Unfreezing and training over the last CNN block onwards
- Unfreezing and training over the last two CNN block onwards
- Learning rates
- Differential learning rates
- Next steps
Taught by
Jonathan Fernandes
Related Courses
Deep Learning with Python and PyTorch.IBM via edX Introduction to Machine Learning
Duke University via Coursera How Google does Machine Learning em Português Brasileiro
Google Cloud via Coursera Intro to Deep Learning with PyTorch
Facebook via Udacity Secure and Private AI
Facebook via Udacity