Machine Learning and AI Foundations: Advanced Decision Trees with KNIME
Offered By: LinkedIn Learning
Course Description
Overview
Learn to go beyond the basic decision tree algorithms in KNIME by accessing WEKA, R, and Python-based decision tree and rule induction algorithms from within the KNIME platform.
Syllabus
Introduction
- Advanced decision trees
- What you should know
- Using the exercise files
- Why are trees considered greedy algorithms?
- Why are there so many algorithms?
- Five low node or no code options in KNIME
- Installing extensions
- WEKA LMT demonstration
- Interpreting the LMT results
- Comparing trees and rule induction
- Rule induction demo
- Interpreting the rules
- Low code options in KNIME
- Python script node demo
- CHAID demo in KNIME
- Advanced code options in KNIME (optimal sparse trees)
- Introducing random forest
- Random forests demo
- Comparing two models
- Data reduction with random forests
- The XAI view node
- Deployment
- Final thoughts and recommendations
Taught by
Keith McCormick
Related Courses
Artificial Intelligence for RoboticsStanford University via Udacity Intro to Computer Science
University of Virginia via Udacity Design of Computer Programs
Stanford University via Udacity Web Development
Udacity Programming Languages
University of Virginia via Udacity