YoVDO

Image Noise Reduction with Auto-encoders using TensorFlow

Offered By: Coursera Project Network via Coursera

Tags

Artificial Intelligence Courses Neural Networks Courses TensorFlow Courses Image Processing Courses Dimensionality Reduction Courses

Course Description

Overview

In this 2-hour long project-based course, you will learn the basics of image noise reduction with auto-encoders. Auto-encoding is an algorithm to help reduce dimensionality of data with the help of neural networks. It can be used for lossy data compression where the compression is dependent on the given data. This algorithm to reduce dimensionality of data as learned from the data can also be used for reducing noise in data. This course runs on Coursera's hands-on project platform called Rhyme. On Rhyme, you do projects in a hands-on manner in your browser. You will get instant access to pre-configured cloud desktops containing all of the software and data you need for the project. Everything is already set up directly in your internet browser so you can just focus on learning. For this project, you’ll get instant access to a cloud desktop with Python, Jupyter, and Tensorflow pre-installed. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

Syllabus

  • Image Noise Reduction with Auto-encoders
    • Welcome to this project-based course on Image Noise Reduction with Auto-encoders. Auto-encoding is an algorithm to help reduce dimensionality of data with the help of neural networks. It can be used for lossy data compression where the compression is dependent on the given data. This algorithm to reduce dimensionality of data as learned from the data can also be used for reducing noise in data. In this project, we will learn to use auto-encoders to reduce noise in images.

Taught by

Amit Yadav

Related Courses

Introduction to Artificial Intelligence
Stanford University via Udacity
Computer Vision: The Fundamentals
University of California, Berkeley via Coursera
Computational Photography
Georgia Institute of Technology via Coursera
Digital Signal Processing
École Polytechnique Fédérale de Lausanne via Coursera
Creative, Serious and Playful Science of Android Apps
University of Illinois at Urbana-Champaign via Coursera