Reinforcement Learning Course: Intro to Advanced Actor Critic Methods
Offered By: freeCodeCamp
Course Description
Overview
Dive into a comprehensive 6-hour course on advanced actor-critic methods in reinforcement learning, focusing on their applications in robotics and continuous action spaces. Explore key algorithms including Actor Critic, Deep Deterministic Policy Gradients (DDPG), Twin Delayed Deep Deterministic Policy Gradients (TD3), Proximal Policy Optimization (PPO), Soft Actor Critic (SAC), and Asynchronous Advantage Actor Critic (A3C). Access provided code repositories for hands-on implementation using TensorFlow 2 and PyTorch. Gain practical insights into controlling robotic systems through electric motor actuation, while understanding the trade-offs in computational complexity. Suitable for learners with prior knowledge in reinforcement learning, this course covers software requirements and offers a detailed syllabus to guide your learning journey.
Syllabus
) Intro.
) Actor Critic (TF2).
) DDPG (TF2).
) TD3 (TF2).
) PPO (PyTorch).
) SAC (TF2).
) A3C (PyTorch).
Taught by
freeCodeCamp.org
Related Courses
Deep Learning and Python Programming for AI with Microsoft AzureCloudswyft via FutureLearn Advanced Artificial Intelligence on Microsoft Azure: Deep Learning, Reinforcement Learning and Applied AI
Cloudswyft via FutureLearn Overview of Advanced Methods of Reinforcement Learning in Finance
New York University (NYU) via Coursera AI for Cybersecurity
Johns Hopkins University via Coursera 人工智慧:機器學習與理論基礎 (Artificial Intelligence - Learning & Theory)
National Taiwan University via Coursera