Statistical Analysis of fMRI Data
Offered By: Johns Hopkins University via Coursera
Course Description
Overview
In this course we will explore the intersection of statistics and functional magnetic resonance imaging, or fMRI, which is a non-invasive technique for studying brain activity. We will discuss the analysis of fMRI data, from its acquisition to its use in locating brain activity, making inference about brain connectivity and predictions about psychological or disease states. A standard fMRI study gives rise to massive amounts of noisy data with a complicated spatio-temporal correlation structure. Statistics plays a crucial role in understanding the nature of the data and obtaining relevant results that can be used and interpreted by neuroscientists.
Syllabus
Week 1 Module 1: Introduction to fMRIModule 2: Basic MR PhysicsModule 3: Image FormationModule 4 K-SpaceModule 5: fMRI Signal and Noise
Week 2 Module 6: fMRI Data StructureModule 7: Experimental DesignModule 8: Pre-processing IModule 9: Pre-processing II
Week 3Module 10: The General Linear ModelModule 11: GLM EstimationModule 12: Model Building IModule 13: Model Building IIModule 14: Noise ModelsModule 15: Inference
Week 4 Module 16: Group-level Analysis IModule 17: Group-level Analysis IIModule 18: Multiple ComparisonsModule 19: FWER CorrectionModule 20: FDR CorrectionModule 21: More Multiple Comparisons
Week 5Module 22: Brain ConnectivityModule 23: Functional ConnectivityModule 24: Multivariate Decomposition MethodsModule 25: Effective ConnectivityModule 26: Comments on Connectivity
Week 6 Module 27: Multi-voxel Pattern AnalysisModule 28: Performing MVPA IModule 29: Performing MVPA IIModule 30: MVPA Example Module 31: Farewell
Week 2 Module 6: fMRI Data StructureModule 7: Experimental DesignModule 8: Pre-processing IModule 9: Pre-processing II
Week 3Module 10: The General Linear ModelModule 11: GLM EstimationModule 12: Model Building IModule 13: Model Building IIModule 14: Noise ModelsModule 15: Inference
Week 4 Module 16: Group-level Analysis IModule 17: Group-level Analysis IIModule 18: Multiple ComparisonsModule 19: FWER CorrectionModule 20: FDR CorrectionModule 21: More Multiple Comparisons
Week 5Module 22: Brain ConnectivityModule 23: Functional ConnectivityModule 24: Multivariate Decomposition MethodsModule 25: Effective ConnectivityModule 26: Comments on Connectivity
Week 6 Module 27: Multi-voxel Pattern AnalysisModule 28: Performing MVPA IModule 29: Performing MVPA IIModule 30: MVPA Example Module 31: Farewell
Taught by
Martin Lindquist
Tags
Related Courses
Social Network AnalysisUniversity of Michigan via Coursera Intro to Algorithms
Udacity Data Analysis
Johns Hopkins University via Coursera Computing for Data Analysis
Johns Hopkins University via Coursera Health in Numbers: Quantitative Methods in Clinical & Public Health Research
Harvard University via edX