YoVDO

Emotion AI: Facial Key-points Detection

Offered By: Coursera Project Network via Coursera

Tags

Facial Recognition Courses Deep Learning Courses Computer Vision Courses Data Augmentation Courses

Course Description

Overview

In this 1-hour long project-based course, you will be able to: - Understand the theory and intuition behind Deep Learning, Convolutional Neural Networks (CNNs) and Residual Neural Networks. - Import Key libraries, dataset and visualize images. - Perform data augmentation to increase the size of the dataset and improve model generalization capability. - Build a deep learning model based on Convolutional Neural Network and Residual blocks using Keras with Tensorflow 2.0 as a backend. - Compile and fit Deep Learning model to training data. - Assess the performance of trained CNN and ensure its generalization using various KPIs. - Improve network performance using regularization techniques such as dropout.

Syllabus

  • Facial Key-point Detection
    • In this hands-on project, we will train deep learning model based on Convolutional Neural Networks (CNNs) and Residual Blocks to detect 15 facial key-points. This project could be practically used for detecting customer emotions and facial expressions.

Taught by

Ryan Ahmed

Related Courses

Introduction to Artificial Intelligence
Stanford University via Udacity
Computer Vision: The Fundamentals
University of California, Berkeley via Coursera
Computational Photography
Georgia Institute of Technology via Coursera
Einführung in Computer Vision
Technische Universität München (Technical University of Munich) via Coursera
Introduction to Computer Vision
Georgia Institute of Technology via Udacity