Facial Expression Classification Using Residual Neural Nets
Offered By: Coursera Project Network via Coursera
Course Description
Overview
In this hands-on project, we will train a deep learning model based on Convolutional Neural Networks (CNNs) and Residual Blocks to detect facial expressions. This project could be practically used for detecting customer emotions and facial expressions.
By the end of this project, you will be able to:
- Understand the theory and intuition behind Deep Learning, Convolutional Neural Networks (CNNs) and Residual Neural Networks.
- Import Key libraries, dataset and visualize images.
- Perform data augmentation to increase the size of the dataset and improve model generalization capability.
- Build a deep learning model based on Convolutional Neural Network and Residual blocks using Keras with Tensorflow 2.0 as a backend.
- Compile and fit Deep Learning model to training data.
- Assess the performance of trained CNN and ensure its generalization using various KPIs.
- Improve network performance using regularization techniques such as dropout.
Syllabus
- Facial Expression Classification with Residual Neural Networks
- In this hands-on project, we will train deep learning model based on Convolutional Neural Networks (CNNs) and Residual Blocks to detect facial expressions. This project could be practically used for detecting customer emotions and facial expressions.
Taught by
Ryan Ahmed
Related Courses
Feature EngineeringGoogle Cloud via Coursera TensorFlow on Google Cloud
Google Cloud via Coursera Deep Learning Fundamentals with Keras
IBM via edX Intro to TensorFlow 日本語版
Google Cloud via Coursera Feature Engineering 日本語版
Google Cloud via Coursera