YoVDO

Learn Embeddings and Vector Databases

Offered By: Scrimba

Tags

Embeddings Courses Vector Databases Courses Semantic Search Courses Similarity Search Courses Supabase Courses Retrieval Augmented Generation (RAG) Courses

Course Description

Overview

Learn how to improve the accuracy and reliability of LLM-based apps by implementing Retrieval-augmented Generation (RAG) using embeddings and a vector database.
  • What is an embedding?
  • Setting up a vector database
  • Supabase & pgvector
  • Semantic search
  • Similarity search
  • Chunking text documents
  • RAG

Syllabus

  • Learn Embeddings and Vector Databases
    • 1. Your next big step in AI engineering
    • 2. What are embeddings?
    • 3. Set up environment variables
    • 4. Create an embedding
    • 5. Challenge: Pair text with embedding
    • 6. Vector databases
    • 7. Set up your vector database with Supabase
    • 8. Store vector embeddings
    • 9. Semantic search
    • 10. Query embeddings using similarity search
    • 11. Create a conversational response using OpenAI
    • 12. Chunking text from documents
    • 13. Challenge: Split text, get vectors, insert into Supabase
    • 14. Error handling
    • 15. Query database and manage multiple matches
    • 16. AI chatbot proof of concept
    • 17. Retrieval-augmented generation (RAG)
    • 18. Solo Project: PopChoice
    • 19. You made it to the finish line!

Related Courses

U&P AI - Natural Language Processing (NLP) with Python
Udemy
What's New in Cognitive Search and Cool Frameworks with PyTorch - Episode 5
Microsoft via YouTube
Stress Testing Qdrant - Semantic Search with 90,000 Vectors - Lightning Fast Search Microservice
David Shapiro ~ AI via YouTube
Semantic Search for AI - Testing Out Qdrant Neural Search
David Shapiro ~ AI via YouTube
Spotify's Podcast Search Explained
James Briggs via YouTube