Learn Embeddings and Vector Databases
Offered By: Scrimba
Course Description
Overview
Learn how to improve the accuracy and reliability of LLM-based apps by implementing Retrieval-augmented Generation (RAG) using embeddings and a vector database.
- What is an embedding?
- Setting up a vector database
- Supabase & pgvector
- Semantic search
- Similarity search
- Chunking text documents
- RAG
Syllabus
- Learn Embeddings and Vector Databases
- 1. Your next big step in AI engineering
- 2. What are embeddings?
- 3. Set up environment variables
- 4. Create an embedding
- 5. Challenge: Pair text with embedding
- 6. Vector databases
- 7. Set up your vector database with Supabase
- 8. Store vector embeddings
- 9. Semantic search
- 10. Query embeddings using similarity search
- 11. Create a conversational response using OpenAI
- 12. Chunking text from documents
- 13. Challenge: Split text, get vectors, insert into Supabase
- 14. Error handling
- 15. Query database and manage multiple matches
- 16. AI chatbot proof of concept
- 17. Retrieval-augmented generation (RAG)
- 18. Solo Project: PopChoice
- 19. You made it to the finish line!
Related Courses
U&P AI - Natural Language Processing (NLP) with PythonUdemy What's New in Cognitive Search and Cool Frameworks with PyTorch - Episode 5
Microsoft via YouTube Stress Testing Qdrant - Semantic Search with 90,000 Vectors - Lightning Fast Search Microservice
David Shapiro ~ AI via YouTube Semantic Search for AI - Testing Out Qdrant Neural Search
David Shapiro ~ AI via YouTube Spotify's Podcast Search Explained
James Briggs via YouTube