YoVDO

Introduction to Python in Power BI

Offered By: DataCamp

Tags

Data Visualization Courses Python Courses Seaborn Courses Data Preparation Courses Correlation Coefficients Courses

Course Description

Overview

Learn how to use Python scripts in Power BI for data prep, visualizations, and calculating correlation coefficients.

In this introduction to Python in Power BI course, you’ll use data from an overfishing study and an online retailer to learn how to use Python scripts in Power BI for data prep, visualizations, and calculating correlation coefficients. Specifically for building custom Python-based visuals, you will be utilizing the Seaborn package. By the end, you should feel a little more comfortable using Python in (and outside of) Power BI.

Whether you were first a Pythonista or a Power BI power user, integrating Python into Power BI is a fantastic addition to the data toolbox. This course will demonstrate that, by using the two together, you can leverage the benefits of each, choosing the best one for the task at hand.

Syllabus

  • Getting Started with Python in Power BI
    • In this first chapter, you will learn the advantages and limitations of Python in Power BI as well as how to enable this capability within a workbook. You will also perform the same task using both technologies separately to build familiarity with the strengths and weaknesses of both. Power BI is a powerful tool. Python can be leveraged to make it even more powerful!
  • Missing Data and Imputation
    • Now that you're up and running with Python in Power BI, let's move on to another important data processing step - identifying missing data and imputation. In this chapter, you will identify missing data in a dataset using Python, then Power BI. You will then work through addressing missing data by leveraging imputation techniques.
  • Visualizations with Seaborn in Power BI
    • In this chapter, you will construct several Python-based visualizations, using the Seaborn package, in Power BI. Specifically, a line plot, pair plot, and joint plot. You will also learn how to interpret these visualizations to extract insights about the data. By this point, you will know some of the key differences between Python and Power BI in basic data processing steps. The next step is to visualize this data!
  • Heatmaps and Correlation Coefficients
    • In this chapter, you will continue evaluating the relationship between variables. This time, you will be doing so quantitatively by calculating the correlation coefficient. You will learn how to do this in Power BI then Python. Finally, you will leverage the power of Seaborn visualizations to create a correlation heatmap! By the time you finish the course, you'll be skilled in Power BI, Python, and data visualization techniques. Nice work!

Taught by

Jacob Marquez

Related Courses

Design Computing: 3D Modeling in Rhinoceros with Python/Rhinoscript
University of Michigan via Coursera
3D SARS-CoV-19 Protein Visualization With Biopython
Coursera Project Network via Coursera
A Simple Scatter Plot using D3 js
Coursera Project Network via Coursera
Access Bioinformatics Databases with Biopython
Coursera Project Network via Coursera
Accounting Data Analytics
University of Illinois at Urbana-Champaign via Coursera