YoVDO

Introduction to MLflow

Offered By: DataCamp

Tags

MLFlow Courses Machine Learning Courses Model Deployment Courses Experiment Tracking Courses

Course Description

Overview

Learn how to use MLflow to simplify the complexities of building machine learning applications. Explore MLflow tracking, projects, models, and model registry.

Managing the end-to-end lifecycle of a Machine Learning application can be a daunting task for data scientists, engineers, and developers. Machine Learning applications are complex and have a proven track record of being difficult to track, hard to reproduce, and problematic to deploy.

In this course, you will learn what MLflow is and how it attempts to simplify the difficulties of the Machine Learning lifecycle such as tracking, reproducibility, and deployment. After learning MLflow, you will have a better understanding of how to overcome the complexities of building Machine Learning applications and how to navigate different stages of the Machine Learning lifecycle.

Syllabus

  • Introduction to MLflow
    • In this Chapter, you will be introduced to MLflow and how it aims to assist with some difficulties of the Machine Learning lifecycle. You will be introduced to the four main concepts that make up MLflow with a main focus on MLflow Tracking. You will learn to create experiments and runs as well as how to track metrics, parameters, and artifacts. Finally, you will search MLflow programmatically to find experiment runs that fit certain criteria.
  • MLflow Models
    • In this Chapter, you will be introduced to MLflow Models. The MLflow Models component of MLflow plays an essential role in the Model Evaluation and Model Engineering steps of the Machine Learning lifecycle. You will learn how MLflow Models standardizes the packaging of ML models as well as how to save, log and load them. You will learn how to create custom MLflow Models to provide more flexibility to your use cases as well as how to evaluate model performance. You will utilize the powerful concept of “Flavors” and finally use the MLflow command line tool for model deployment.
  • Mlflow Model Registry
    • This Chapter introduces the concept of MLflow called the Model Registry. You will be introduced to how the Model Registry is used to manage the lifecycle of ML models. You will learn how to create and search for models in the Model Registry. You then learn how to register models to the Model Registry and learn how to transition models between predefined stages. Finally, you will also learn how to deploy models from the Model Registry.
  • MLflow Projects
    • In this chapter, you'll gain valuable knowledge on how to streamline your data science code for reusability and reproducibility using MLflow Projects. The chapter begins by introducing the concept of MLflow Projects and walking you through creating an MLproject file. From there, you'll learn how to run MLflow Projects through both the command-line and the MLflow Projects module while also discovering the power of using parameters for added flexibility in your code. Finally, you will learn how to manage steps of the machine learning lifecycle by creating a multi-step workflow using MLflow Projects.

Taught by

Weston Bassler

Related Courses

Introduction to Artificial Intelligence
Stanford University via Udacity
Natural Language Processing
Columbia University via Coursera
Probabilistic Graphical Models 1: Representation
Stanford University via Coursera
Computer Vision: The Fundamentals
University of California, Berkeley via Coursera
Learning from Data (Introductory Machine Learning course)
California Institute of Technology via Independent