Importing and Managing Financial Data in Python
Offered By: DataCamp
Course Description
Overview
In this course, you'll learn how to import and manage financial data in Python using various tools and sources.
If you want to apply your new 'Python for Data Science' skills to real-world financial data, then this course will give you some very valuable tools.
First, you will learn how to get data out of Excel into pandas and back. Then, you will learn how to pull stock prices from various online APIs like
Google or Yahoo! Finance, macro data from the Federal Reserve, and exchange rates from OANDA. Finally, you will learn how to calculate returns for various time horizons,
analyze stock performance by sector for IPOs, and calculate and summarize correlations.
If you want to apply your new 'Python for Data Science' skills to real-world financial data, then this course will give you some very valuable tools.
First, you will learn how to get data out of Excel into pandas and back. Then, you will learn how to pull stock prices from various online APIs like
Google or Yahoo! Finance, macro data from the Federal Reserve, and exchange rates from OANDA. Finally, you will learn how to calculate returns for various time horizons,
analyze stock performance by sector for IPOs, and calculate and summarize correlations.
Syllabus
- Importing stock listing data from Excel
In this chapter, you will learn how to import, clean and combine data from Excel workbook sheets into a pandas DataFrame. You will also practice grouping data, summarizing information for categories, and visualizing the result using subplots and heatmaps.
You will use data on companies listed on the stock exchanges NASDAQ, NYSE, and AMEX with information on company name, stock symbol, last market capitalization and price, sector or industry group, and IPO year. In Chapter 2, you will build on this data to download and analyze stock price history for some of these companies.- Importing financial data from the web
- This chapter introduces online data access to Google Finance and the Federal Reserve Data Service through the `pandas` `DataReader`. You will pull data, perform basic manipulations, combine data series, and visualize the results.
- Summarizing your data and visualizing the result
In this chapter, you will learn how to capture key characteristics of individual variables in simple metrics. As a result, it will be easier to understand the distribution of the variables in your data set: Which values are central to, or typical of your data? Is your data widely dispersed, or rather narrowly distributed around some mid point? Are there outliers? What does the overall distribution look like?
Aggregating and describing your data by category
This chapter introduces the ability to group data by one or more categorical variables, and to calculate and visualize summary statistics for each caategory. In the process, you will learn to compare company statistics for different sectors and IPO vintages, analyze the global income distribution over time, and learn how to create various statistical charts from the seaborn library.
Taught by
Stefan Jansen
Related Courses
Data Preparation (Import and Cleaning) for PythonA Cloud Guru Using Python for Data Management and Reporting
A Cloud Guru Using Python's Math, Science, and Engineering Libraries
A Cloud Guru Amazon SageMaker: Build an Object Detection Model Using Images Labeled with Ground Truth (Vietnamese)
Amazon Web Services via AWS Skill Builder Amazon SageMaker: Build an Object Detection Model Using Images Labeled with Ground Truth (German)
Amazon Web Services via AWS Skill Builder