YoVDO

Inferential Statistical Analysis with Python

Offered By: University of Michigan via Coursera

Tags

Python Courses Statistics & Probability Courses Data Analysis Courses Seaborn Courses pandas Courses Jupyter Notebooks Courses Hypothesis Testing Courses Confidence Intervals Courses Inferential Statistics Courses Statsmodels Courses

Course Description

Overview

In this course, we will explore basic principles behind using data for estimation and for assessing theories. We will analyze both categorical data and quantitative data, starting with one population techniques and expanding to handle comparisons of two populations. We will learn how to construct confidence intervals. We will also use sample data to assess whether or not a theory about the value of a parameter is consistent with the data. A major focus will be on interpreting inferential results appropriately. At the end of each week, learners will apply what they’ve learned using Python within the course environment. During these lab-based sessions, learners will work through tutorials focusing on specific case studies to help solidify the week’s statistical concepts, which will include further deep dives into Python libraries including Statsmodels, Pandas, and Seaborn. This course utilizes the Jupyter Notebook environment within Coursera.

Syllabus

  • WEEK 1 - OVERVIEW & INFERENCE PROCEDURES
    • In this first week, we’ll review the course syllabus and discover the various concepts and objectives to be mastered in weeks to come. You’ll be introduced to inference methods and some of the research questions we’ll discuss in the course, as well as an overall framework for making decisions using data, considerations for how you make those decisions, and evaluating errors that you may have made. On the Python side, we’ll review some high level concepts from the first course in this series, Python’s statistics landscape, and walk through intermediate level Python concepts. All of the course information on grading, prerequisites, and expectations are on the course syllabus and you can find more information on our Course Resources page.
  • WEEK 2 - CONFIDENCE INTERVALS
    • In this second week, we will learn about estimating population parameters via confidence intervals. You will be introduced to five different types of population parameters, assumptions needed to calculate a confidence interval for each of these five parameters, and how to calculate confidence intervals. Quizzes will appear throughout the week to test your understanding. In addition, you’ll learn how to create confidence intervals in Python.
  • WEEK 3 - HYPOTHESIS TESTING
    • In week three, we’ll learn how to test various hypotheses - using the five different analysis methods covered in the previous week. We’ll discuss the importance of various factors and assumptions with hypothesis testing and learn to interpret our results. We will also review how to distinguish which procedure is appropriate for the research question at hand. Quizzes and a peer assessment will appear throughout the week to test your understanding.
  • WEEK 4 - LEARNER APPLICATION
    • In the final week of this course, we will walk through several examples and case studies that illustrate applications of the inferential procedures discussed in prior weeks. Learners will see examples of well-formulated research questions related to the study designs and data sets that we have discussed thus far, and via both confidence interval estimation and formal hypothesis testing, we will formulate inferential responses to those questions.

Taught by

Brenda Gunderson, Brady T. West and Kerby Shedden

Tags

Related Courses

Design Computing: 3D Modeling in Rhinoceros with Python/Rhinoscript
University of Michigan via Coursera
A Practical Introduction to Test-Driven Development
LearnQuest via Coursera
FinTech for Finance and Business Leaders
ACCA via edX
Access Bioinformatics Databases with Biopython
Coursera Project Network via Coursera
Accounting Data Analytics
University of Illinois at Urbana-Champaign via Coursera