Knowledge Inference and Structure Discovery for Education
Offered By: University of Texas Arlington via edX
Course Description
Overview
In this course, you will learn key methods for discovering how content can be divided into skills and concepts and how to measure student knowledge while it is changing – i.e. the student is learning.
This course will also cover related methods for discovering structure in unlabeled data, such as factor analysis and clustering. It will also cover related methods for relationship mining including how to validly conduct correlation mining and how to automatically discover association rules and sequential rules.
This mini-course does not assume prior programming knowledge beyond what you will already have learned in other courses in this MicroMasters, although advanced tools will be discussed for interested students.
This course includes content also offered in the University of Pennsylvania’s edX MOOC, Big Data and Education, weeks 4, 5, and 7.
This course will also cover related methods for discovering structure in unlabeled data, such as factor analysis and clustering. It will also cover related methods for relationship mining including how to validly conduct correlation mining and how to automatically discover association rules and sequential rules.
This mini-course does not assume prior programming knowledge beyond what you will already have learned in other courses in this MicroMasters, although advanced tools will be discussed for interested students.
This course includes content also offered in the University of Pennsylvania’s edX MOOC, Big Data and Education, weeks 4, 5, and 7.
Syllabus
Week 1: Structure Discovery: Clustering, Factor Analysis, and Knowledge Structures
Week 2: Knowledge Inference: Bayesian Knowledge Tracing, Performance Factors Analysis, Item Response Theory, and Deep Learning
Week 3: Relationship Mining: Correlation Mining, Association Rule Mining, and Sequential Pattern Mining
Week 2: Knowledge Inference: Bayesian Knowledge Tracing, Performance Factors Analysis, Item Response Theory, and Deep Learning
Week 3: Relationship Mining: Correlation Mining, Association Rule Mining, and Sequential Pattern Mining
Taught by
Ryan Baker
Tags
Related Courses
Neural Networks for Machine LearningUniversity of Toronto via Coursera 機器學習技法 (Machine Learning Techniques)
National Taiwan University via Coursera Machine Learning Capstone: An Intelligent Application with Deep Learning
University of Washington via Coursera Прикладные задачи анализа данных
Moscow Institute of Physics and Technology via Coursera Leading Ambitious Teaching and Learning
Microsoft via edX