Cluster Analysis in Data Mining
Offered By: University of Illinois at Urbana-Champaign via Coursera
Course Description
Overview
Discover the basic concepts of cluster analysis, and then study a set of typical clustering methodologies, algorithms, and applications. This includes partitioning methods such as k-means, hierarchical methods such as BIRCH, and density-based methods such as DBSCAN/OPTICS. Moreover, learn methods for clustering validation and evaluation of clustering quality. Finally, see examples of cluster analysis in applications.
Syllabus
- Course Orientation
- You will become familiar with the course, your classmates, and our learning environment. The orientation will also help you obtain the technical skills required for the course.
- Module 1
- Week 2
- Week 3
- Week 4
- Course Conclusion
- In the course conclusion, feel free to share any thoughts you have on this course experience.
Taught by
Jiawei Han
Tags
Related Courses
Introduction to Data ScienceUniversity of Washington via Coursera Big Data Analytics in Healthcare
Georgia Institute of Technology via Udacity More Data Mining with Weka
University of Waikato via Independent Mining Massive Datasets
Stanford University via edX Pattern Discovery in Data Mining
University of Illinois at Urbana-Champaign via Coursera