Applied Machine Learning: Algorithms
Offered By: LinkedIn Learning
Course Description
Overview
Learn about common machine learning algorithms, their pros and cons, and develop hands-on skills to leverage them.
Syllabus
Introduction
- Applied machine learning: Algorithms
- What you should know
- K-means
- K evaluation
- Understanding clusters
- Other algorithms
- Challenge: Apply KNN
- Solution: Apply KNN
- PCA
- Structure of components
- Components
- Scatter plot
- Other algorithms
- Challenge: Utilize PCA
- Solution: Utilize PCA
- Linear regression algorithm
- scikit-learn
- Real-world example
- Assumptions
- Challenge: Develop a linear regression model
- Solution: Develop a linear regression model
- Logistic regression algorithm
- Basic example
- Assumptions
- Challenge: Construct a logistic regression model
- Solution: Construct a logistic regression model
- Decision tree algorithm
- Real-world example
- Random Forest and XGBoost
- Challenge: Design a decision tree model
- Solution: Design a decision tree model
- Next steps
Taught by
Derek Jedamski
Related Courses
Practical Machine LearningJohns Hopkins University via Coursera Detección de objetos
Universitat Autònoma de Barcelona (Autonomous University of Barcelona) via Coursera Practical Machine Learning on H2O
H2O.ai via Coursera Modélisez vos données avec les méthodes ensemblistes
CentraleSupélec via OpenClassrooms Introduction to Machine Learning for Coders!
fast.ai via Independent