Applied Machine Learning: Algorithms
Offered By: LinkedIn Learning
Course Description
Overview
Learn about common machine learning algorithms, their pros and cons, and develop hands-on skills to leverage them.
Syllabus
Introduction
- Applied machine learning: Algorithms
- What you should know
- K-means
- K evaluation
- Understanding clusters
- Other algorithms
- Challenge: Apply KNN
- Solution: Apply KNN
- PCA
- Structure of components
- Components
- Scatter plot
- Other algorithms
- Challenge: Utilize PCA
- Solution: Utilize PCA
- Linear regression algorithm
- scikit-learn
- Real-world example
- Assumptions
- Challenge: Develop a linear regression model
- Solution: Develop a linear regression model
- Logistic regression algorithm
- Basic example
- Assumptions
- Challenge: Construct a logistic regression model
- Solution: Construct a logistic regression model
- Decision tree algorithm
- Real-world example
- Random Forest and XGBoost
- Challenge: Design a decision tree model
- Solution: Design a decision tree model
- Next steps
Taught by
Derek Jedamski
Related Courses
Cluster Analysis in Data MiningUniversity of Illinois at Urbana-Champaign via Coursera Explorez vos données avec des algorithmes non supervisés
CentraleSupélec via OpenClassrooms Clustering Geolocation Data Intelligently in Python
Coursera Project Network via Coursera Cluster Analysis using RCmdr
Coursera Project Network via Coursera Spark for Machine Learning & AI
LinkedIn Learning