YoVDO

Big Data Analytics Using Spark

Offered By: University of California, San Diego via edX

Tags

Big Data Courses Data Science Courses

Course Description

Overview

In data science, data is called "big" if it cannot fit into the memory of a single standard laptop or workstation.

The analysis of big datasets requires using a cluster of tens, hundreds or thousands of computers. Effectively using such clusters requires the use of distributed files systems, such as the Hadoop Distributed File System (HDFS) and corresponding computational models, such as Hadoop, MapReduce and Spark.

In this course, part of the Data Science MicroMasters program, you will learn what the bottlenecks are in massive parallel computation and how to use spark to minimize these bottlenecks.

You will learn how to perform supervised an unsupervised machine learning on massive datasets using the Machine Learning Library (MLlib).

In this course, as in the other ones in this MicroMasters program, you will gain hands-on experience using PySpark within the Jupyter notebooks environment.


Taught by

Yoav Freund

Tags

Related Courses

Web Intelligence and Big Data
Indian Institute of Technology Delhi via Coursera
Big Data for Better Performance
Open2Study
Big Data and Education
Columbia University via edX
Big Data Analytics in Healthcare
Georgia Institute of Technology via Udacity
Data Mining with Weka
University of Waikato via Independent