Bayesian Optimization with Python
Offered By: Coursera Project Network via Coursera
Course Description
Overview
In this guided project you will get familiar with the basics of Bayesian optimization and Implement Bayesian optimization algorithm process and use it in a machine learning project, We will consider function optimization task and also Hyperparameters tuning using Bayesian optimization and GPyOpt library.
Bayesian optimization is a nice topic, whether you want to do a high dimensional or a computationally expensive optimization it's efficient. By the end of this project you will be able to understand and start applying Bayesian optimization in your machine learning projects.
Bayesian optimization is a nice topic, whether you want to do a high dimensional or a computationally expensive optimization it's efficient. By the end of this project you will be able to understand and start applying Bayesian optimization in your machine learning projects.
Taught by
Farhad Abdi
Related Courses
Addressing Large Hadron Collider Challenges by Machine LearningHigher School of Economics via Coursera Hyperparameter Tuning with Keras Tuner
Coursera Project Network via Coursera Automatic Model Tuning in Amazon SageMaker (Traditional Chinese)
Amazon Web Services via AWS Skill Builder Hyperparameter Optimization for Machine Learning
Udemy ML Parameters Optimization: GridSearch, Bayesian, Random
Coursera Project Network via Coursera