Bayesian Optimization with Python
Offered By: Coursera Project Network via Coursera
Course Description
Overview
In this guided project you will get familiar with the basics of Bayesian optimization and Implement Bayesian optimization algorithm process and use it in a machine learning project, We will consider function optimization task and also Hyperparameters tuning using Bayesian optimization and GPyOpt library.
Bayesian optimization is a nice topic, whether you want to do a high dimensional or a computationally expensive optimization it's efficient. By the end of this project you will be able to understand and start applying Bayesian optimization in your machine learning projects.
Bayesian optimization is a nice topic, whether you want to do a high dimensional or a computationally expensive optimization it's efficient. By the end of this project you will be able to understand and start applying Bayesian optimization in your machine learning projects.
Taught by
Farhad Abdi
Related Courses
Introduction to Probability, Statistics, and Random ProcessesUniversity of Massachusetts Amherst via Independent Bayesian Statistics
Duke University via Coursera Bayesian Statistics: From Concept to Data Analysis
University of California, Santa Cruz via Coursera Improving your statistical inferences
Eindhoven University of Technology via Coursera Bayesian Statistics: Techniques and Models
University of California, Santa Cruz via Coursera