Знакомство с R и базовая статистика
Offered By: Saint Petersburg State University via Coursera
Course Description
Overview
Статистическая обработка данных и визуализация результатов анализа - это неизбежный этап работы с данными, полученными в различных областях естественных наук, в социологии, психологии или экономике. В этом курсе мы подробно разберем основы статистики и познакомимся с основами языка статистического программирования R. Мы научим вас гибко использовать средства визуализации (диаграммы, графики и т.п.), чтобы сделать результаты анализа максимально доступными и понятными. Вы научитесь рассчитывать основные описательные статистики: медиану и квантили, среднее и стандартное отклонение. Вы познакомитесь с принципами использования теоретических распределений статистик для построения доверительных интервалов и тестирования гипотез (на примере t-критерия). Наконец, мы обсудим сложности, возникающие при множественном тестировании гипотез и научим вас преодолевать их.
Этот курс для людей, начинающих знакомство со статистикой, а также для тех, кто хочет не только освоить базовые возможности языка R, но и научиться строить сложные графики.
Этот курс для людей, начинающих знакомство со статистикой, а также для тех, кто хочет не только освоить базовые возможности языка R, но и научиться строить сложные графики.
Syllabus
- Знакомство с R
- В этом модуле мы начнем знакомство с языком статистического программирования R - основным инструментом, который мы будем использовать для анализа данных. Вы узнаете, как установить и настроить R и RStudio и как получить помощь. К концу модуля вы сможете использовать операторы и функции R для работы с числами и векторами.
- Работа с данными
- Существует множество способов представления и хранения данных в R. После обсуждения того, какие бывают типы данных, мы обратимся к методам их препарирования. Вы научитесь разными способами извлекать части векторов и таблиц и использовать для вычислений только нужные фрагменты данных. Для работы мы будем использовать не только данные, уже встроенные в R, но и научим вас открывать данные из внешних источников на примере .xlsx или .csv файлов. Мы обсудим принципы организации табличных данных для удобства машинного анализа (опрятные данные, tidy data).
- Графики с использованием ggplot2
- Графическое представление данных позволяет получить максимум информации за минимальный промежуток времени - часто это лучший способ представить данные в отчете. В этом модуле вы научитесь строить графики разной степени сложности, пользуясь принципами грамматики графиков (средствами пакета ggplot2). Кроме того, мы поговорим о том, как создавать в R автоматизированные отчеты с помощью rmarkdown и knitr.
- Описательная статистика
- Чаще всего, анализируя данные, мы имеем дело с выборками, но хотим делать выводы о свойствах генеральной совокупности, из которой они взяты. Описание выборок - это первый этап анализа данных. В этом модуле вы познакомитесь с основными описательными статистиками и их свойствами (медиана, квантили, среднее, дисперсия, стандартное отклонение). Мы обсудим свойства нормального и t- распределения и научимся с их помощью вычислять вероятности. Наконец, пользуясь центральной предельной теоремой, вы научитесь строить доверительные интервалы к оценкам средних.
- Тестирование гипотез
- В этом модуле вы научитесь тестировать гипотезы, чтобы проверять предположения на основании данных. На примере одновыборочного и двухвыборочного t-тестов мы разберем механизм конструирования тестовых статистик и алгоритм действий при тестировании гипотез. Вы узнаете, откуда родом те самые “условия применимости” t-тестов и научитесь их проверять. Мы обсудим ошибки, которые возникают при тестировании гипотез (не только ошибки I- и II-рода, но и S- или M-ошибки). Вы узнаете об опасностях, которые подстерегают вас при множественных тестах, и научитесь оберегать себя от них при помощи поправок на множественное тестирование.
Знания, полученные в этом курсе в целом, вы сможете закрепить, выполнив проект, посвященный описанию выборок и тестированию различий между группами.
Taught by
Варфоломеева Марина Александровна and Хайтов Вадим Михайлович
Tags
Related Courses
Advanced CloudFormation: Macros (Simplified Chinese)Amazon Web Services via AWS Skill Builder Advanced Java Concurrency
Vanderbilt University via Coursera Advanced Monitoring and Optimizing with DynamoDB (Traditional Chinese)
Amazon Web Services via AWS Skill Builder Advanced SAS Programming Techniques
SAS via Coursera Amazon DynamoDB for Serverless Architectures (Spanish)
Amazon Web Services via AWS Skill Builder