A Counter-Example to Hausmann's Conjecture
Offered By: Applied Algebraic Topology Network via YouTube
Course Description
Overview
Explore a groundbreaking lecture that challenges a long-standing conjecture in algebraic topology. Delve into the world of Vietoris-Rips complexes and their connectivity as Žiga Virk presents a counter-example to Hausmann's conjecture from 1995. Learn about the stability property of persistent homology and its crucial role in disproving the monotonicity of Vietoris-Rips complex connectivity. Gain insights into the implications of this discovery for closed compact Riemannian manifolds and their homotopy equivalence to Vietoris-Rips complexes at small scale parameters.
Syllabus
Žiga Virk (4/24/21): A counter-example to Hausmann's conjecture
Taught by
Applied Algebraic Topology Network
Related Courses
Topology for Time SeriesData Science Dojo via YouTube Studying Fluid Flows with Persistent Homology - Rachel Levanger
Institute for Advanced Study via YouTube Persistence Diagram Bundles- A Multidimensional Generalization of Vineyards
Applied Algebraic Topology Network via YouTube GPU Accelerated Computation of VR Barcodes in Evaluating Deep Learning Models
Applied Algebraic Topology Network via YouTube New Results in Computing Zigzag and Multiparameter Persistence
Applied Algebraic Topology Network via YouTube