Generalizations of the Bernstein Problem
Offered By: University of Chicago Department of Mathematics via YouTube
Course Description
Overview
Explore a captivating mathematics lecture on "Generalizations of the Bernstein Problem" delivered by Stanford's Otis Chodosh at the ZhengTong Chern-Weil Symposium. Delve into the fascinating world of minimal surface equations, beginning with Sergei Bernstein's 1914 proof that entire solutions on R^2 must be affine. Discover the deep connections between this nonlinear version of the Liouville theorem for harmonic functions and the regularity of minimal surfaces. Gain insights into higher-dimensional scenarios and natural generalizations of this problem, expanding your understanding of complex mathematical concepts in this 57-minute presentation from the University of Chicago Department of Mathematics.
Syllabus
ZhengTong Chern-Weil Symposium: Otis Chodosh (Stanford)
Taught by
University of Chicago Department of Mathematics
Related Courses
Nonlinear Dynamics 1: Geometry of ChaosGeorgia Institute of Technology via Independent Geometría diferencial y Mecánica: una introducción
Universidad de La Laguna via Miríadax Geometría diferencial y Mecánica: una introducción
Universidad de La Laguna via Miríadax Differential Geometry
Math at Andrews via YouTube On Gradient-Based Optimization - Accelerated, Distributed, Asynchronous and Stochastic
Simons Institute via YouTube