Generalizations of the Bernstein Problem
Offered By: University of Chicago Department of Mathematics via YouTube
Course Description
Overview
Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Explore a captivating mathematics lecture on "Generalizations of the Bernstein Problem" delivered by Stanford's Otis Chodosh at the ZhengTong Chern-Weil Symposium. Delve into the fascinating world of minimal surface equations, beginning with Sergei Bernstein's 1914 proof that entire solutions on R^2 must be affine. Discover the deep connections between this nonlinear version of the Liouville theorem for harmonic functions and the regularity of minimal surfaces. Gain insights into higher-dimensional scenarios and natural generalizations of this problem, expanding your understanding of complex mathematical concepts in this 57-minute presentation from the University of Chicago Department of Mathematics.
Syllabus
ZhengTong Chern-Weil Symposium: Otis Chodosh (Stanford)
Taught by
University of Chicago Department of Mathematics
Related Courses
Analytical Mechanics for Spacecraft DynamicsUniversity of Colorado Boulder via Coursera Differential Equations II
Brilliant Differential Equations for Engineers
The Hong Kong University of Science and Technology via Coursera Дифференциальные уравнения для инженеров
The Hong Kong University of Science and Technology via Coursera Dynamical Modeling Methods for Systems Biology
Icahn School of Medicine at Mount Sinai via Coursera