YoVDO

Discrete Morse Graph Skeletonization and Application to Local Structures of scRNA-seq Data

Offered By: Institute for Pure & Applied Mathematics (IPAM) via YouTube

Tags

Topological Data Analysis Courses Data Visualization Courses Computational Biology Courses High-dimensional Data Courses Persistent Homology Courses Discrete Morse Theory Courses

Course Description

Overview

Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Explore a 52-minute conference talk on discrete Morse graph skeletonization and its application to analyzing local structures of scRNA-seq data. Delve into the emerging field of topological and geometric data analysis (TGDA) as Yusu Wang from the University of California, San Diego, presents at IPAM's Mathematical Approaches for Connectome Analysis Workshop. Discover how topological objects from discrete Morse theory and persistent homology can be utilized to extract graph skeletons from high-dimensional point cloud data. Learn about the practical application of this graph skeletonization method in studying and quantifying differences in local structures of scRNA-seq datasets across various brain regions. Gain insights into this collaborative research effort with L. Magee, R. Gala, U. Sumbul, and M. Hawrylycz, recorded on February 16, 2024.

Syllabus

Yusu Wang - Discrete Morse Graph Skeletonization & Application to Local Structures of scRNA-seq Data


Taught by

Institute for Pure & Applied Mathematics (IPAM)

Related Courses

Synapses, Neurons and Brains
Hebrew University of Jerusalem via Coursera
Моделирование биологических молекул на GPU (Biomolecular modeling on GPU)
Moscow Institute of Physics and Technology via Coursera
Bioinformatics Algorithms (Part 2)
University of California, San Diego via Coursera
Biology Meets Programming: Bioinformatics for Beginners
University of California, San Diego via Coursera
Neuronal Dynamics
École Polytechnique Fédérale de Lausanne via edX