Coupling Time-Aware Multipersistence with Graph CNNs for Time Series Forecasting
Offered By: Applied Algebraic Topology Network via YouTube
Course Description
Overview
Explore a cutting-edge approach to time series forecasting in this 54-minute conference talk by Yulia Gel. Delve into the innovative coupling of time-aware multipersistence knowledge representation with Graph Convolutional Networks (GCNs). Learn how this method addresses limitations in existing Graph Neural Networks (GNNs) by explicitly accounting for time dependencies and inferring latent time-conditioned relations among entities. Discover the power of multipersistence in topological data analysis for capturing hidden time-conditioned properties. Understand the construction of a supragraph convolution module that simultaneously considers intra- and inter-dependencies in data. Examine practical applications of this approach in forecasting highway traffic flow, blockchain Ethereum token prices, and COVID-19 hospitalizations. Gain insights into the stability of the time-aware multipersistence Euler-Poincaré surface and its role in enhancing forecasting capabilities.
Syllabus
Yulia Gel (4/25/23) Coupling Time-Aware Multipersistence with Graph CNNs for Time Series Forecasting
Taught by
Applied Algebraic Topology Network
Related Courses
Social Network AnalysisUniversity of Michigan via Coursera Intro to Algorithms
Udacity Data Analysis
Johns Hopkins University via Coursera Computing for Data Analysis
Johns Hopkins University via Coursera Health in Numbers: Quantitative Methods in Clinical & Public Health Research
Harvard University via edX