Productionizing ML Models for Online Shopping at Loblaws
Offered By: Toronto Machine Learning Series (TMLS) via YouTube
Course Description
Overview
Explore the process of productionizing machine learning models for online shopping at Loblaws in this 37-minute conference talk by Xiaoming Zhang, a senior data scientist at Loblaw Digital. Learn about the implementation of ML models as managed microservices through CI pipelines, continuous improvement strategies using online A/B and multi-armed bandit testing, and the technical aspects of leveraging cloud platforms and open-source tools like Seldon Core. Gain insights into personalization and recommendation systems for digital shopping experiences, as well as ML model deployment infrastructure. Benefit from Zhang's diverse background in physics, including geophysics and condensed matter theory, as she shares her expertise in data science and model productionization for the retail industry.
Syllabus
Xiaoming Zhang - Productionizing ML Models at Online Shopping at Loblaws
Taught by
Toronto Machine Learning Series (TMLS)
Related Courses
Introduction to Artificial IntelligenceStanford University via Udacity Natural Language Processing
Columbia University via Coursera Probabilistic Graphical Models 1: Representation
Stanford University via Coursera Computer Vision: The Fundamentals
University of California, Berkeley via Coursera Learning from Data (Introductory Machine Learning course)
California Institute of Technology via Independent