YoVDO

Workshop on Probabilistic Numerical Methods - Panel Discussion

Offered By: Alan Turing Institute via YouTube

Tags

Uncertainty Quantification Courses Differential Equations Courses Statistical Inference Courses

Course Description

Overview

Participate in a panel discussion exploring probabilistic numerical methods, part of the SAMSI Programme on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applied Mathematics. Delve into topics such as reference priors for probabilistic solutions of differential equations, heavy-tailed stable distributions for robust uncertainty quantification, statistical estimation with multi-resolution operator decompositions, and probabilistic numerical methods as Bayesian inversion methods. Gain insights from experts in the field as they discuss the development of these methods, which provide analysts with richer, probabilistic quantification of numerical errors in their outputs, enhancing tools for reliable statistical inference. Learn about the critical role of accurate discrete approximations in mathematical modeling and how probabilistic approaches can improve the accuracy and robustness of numerical predictions. For more information on this collaborative effort between the Alan Turing Institute, SAMSI, and Lloyd's Register Foundation, visit Prob-Num.org.

Syllabus

Introductions
Yousef Mizuki
Tim Sullivan
Question
Discussion


Taught by

Alan Turing Institute

Related Courses

Statistics in Medicine
Stanford University via Stanford OpenEdx
Introduction to Statistics: Inference
University of California, Berkeley via edX
Probability - The Science of Uncertainty and Data
Massachusetts Institute of Technology via edX
Statistical Inference
Johns Hopkins University via Coursera
Explore Statistics with R
Karolinska Institutet via edX