Data-Efficient Graph Grammar Learning for Molecular Generation
Offered By: Neurosymbolic Programming for Science via YouTube
Course Description
Overview
Explore a data-efficient neurosymbolic generative model for molecular generation in this 1-hour 8-minute workshop. Learn about a learnable graph grammar that generates molecules from a sequence of production rules, addressing the challenges of limited class-specific chemical datasets and the need to generate only physically synthesizable molecules. Discover how this method can be learned from significantly smaller datasets compared to common benchmarks, and how additional chemical knowledge can be incorporated through further grammar optimization. Gain insights into overcoming the limitations of deep neural network-based approaches that typically require large training datasets.
Syllabus
Workshop 1: Data-Efficient Graph Grammar Learning for Molecular Generation
Taught by
Neurosymbolic Programming for Science
Related Courses
Visual Recognition & UnderstandingUniversity at Buffalo via Coursera Deep Learning for Computer Vision
IIT Hyderabad via Swayam Deep Learning in Life Sciences - Spring 2021
Massachusetts Institute of Technology via YouTube Advanced Deep Learning Methods for Healthcare
University of Illinois at Urbana-Champaign via Coursera Generative Models
Serrano.Academy via YouTube