Automatic ML Model Containerization: Best Practices and Tools
Offered By: MLOps World: Machine Learning in Production via YouTube
Course Description
Overview
Dive deep into the process of building machine learning models into container images for production inference in this comprehensive talk from MLOps World: Machine Learning in Production. Learn best practices for secure, multi-tenant image builds that avoid vendor lock-in from Clayton Davis, Head of Data Science, and Saumil Dave, Head of ML Engineering at Modzy. Explore tooling like chassis.ml and standards such as Open Model Interface (OMI) to streamline the containerization process. Gain valuable insights on creating a standard container specification that ensures interoperability, portability, and security for seamless integration of models into production applications. Ideal for data scientists and developers seeking to enhance their understanding of ML model containerization and deployment strategies.
Syllabus
What's in the Box: Automatic ML Model Containerization
Taught by
MLOps World: Machine Learning in Production
Related Courses
Cloud Computing Applications, Part 1: Cloud Systems and InfrastructureUniversity of Illinois at Urbana-Champaign via Coursera Introduction to Cloud Infrastructure Technologies
Linux Foundation via edX Introduction aux conteneurs
Microsoft Virtual Academy via OpenClassrooms The Docker for DevOps course: From development to production
Udemy Windows Server 2016: Virtualization
Microsoft via edX