A Guide to Perform Transcriptomic Deconvolution in Cancer
Offered By: Computational Genomics Summer Institute CGSI via YouTube
Course Description
Overview
Explore transcriptomic deconvolution techniques for cancer research in this comprehensive conference talk. Delve into the methodologies and applications of deconvoluting complex tumor samples with immune infiltration. Learn about estimating tumor cell total mRNA expression across 15 cancer types and its potential for predicting disease progression. Discover the DeMixSC deconvolution framework, which combines single-cell sequencing with benchmark datasets to improve cell-type ratio analysis in heterogeneous tissue samples. Gain insights from related research papers and understand how these advanced techniques contribute to a deeper understanding of cancer biology and potential therapeutic approaches.
Syllabus
Wang Z, et al. Transcriptome Deconvolution of Heterogeneous Tumor Samples with Immune Infiltration. iScience. 2018 Nov 30;1-460. doi: 10.1016/j.isci.2018.10.028.
Taught by
Computational Genomics Summer Institute CGSI
Related Courses
Synapses, Neurons and BrainsHebrew University of Jerusalem via Coursera Моделирование биологических молекул на GPU (Biomolecular modeling on GPU)
Moscow Institute of Physics and Technology via Coursera Bioinformatics Algorithms (Part 2)
University of California, San Diego via Coursera Biology Meets Programming: Bioinformatics for Beginners
University of California, San Diego via Coursera Neuronal Dynamics
École Polytechnique Fédérale de Lausanne via edX