YoVDO

VOS - Learning What You Don't Know By Virtual Outlier Synthesis

Offered By: Aleksa Gordić - The AI Epiphany via YouTube

Tags

Neural Networks Courses Object Detection Courses Image Classification Courses Image Processing Courses

Course Description

Overview

Explore a comprehensive video explanation of the "VOS: Learning What You Don't Know By Virtual Outlier Synthesis" paper, which introduces an innovative method for sampling out-of-distribution (OOD) data in the feature space to create more robust in-distribution (ID) image classification and object detection models. Delve into the intricacies of the VOS approach, including its high-level explanation, alternative synthesis methods, uncertainty loss components, and inference-time OOD detection. Gain insights into the step-by-step implementation, results, computational costs, and visualizations of this cutting-edge technique for improving model generalization and OOD awareness.

Syllabus

Intro to the OOD problem
High-level VOS explanation
Alternative synthesis approach GANs
Diving deeper into the method
Uncertainty loss component
Inference-time OOD detection
Method step-by-step overview
Results
Computational cost
Ablations, visualization
Outro


Taught by

Aleksa Gordić - The AI Epiphany

Related Courses

Clasificación de imágenes: ¿cómo reconocer el contenido de una imagen?
Universitat Autònoma de Barcelona (Autonomous University of Barcelona) via Coursera
Core ML: Machine Learning for iOS
Udacity
Fundamentals of Deep Learning for Computer Vision
Nvidia via Independent
Computer Vision and Image Analysis
Microsoft via edX
Using GPUs to Scale and Speed-up Deep Learning
IBM via edX