YoVDO

VOS - Learning What You Don't Know By Virtual Outlier Synthesis

Offered By: Aleksa Gordić - The AI Epiphany via YouTube

Tags

Neural Networks Courses Object Detection Courses Image Classification Courses Image Processing Courses

Course Description

Overview

Explore a comprehensive video explanation of the "VOS: Learning What You Don't Know By Virtual Outlier Synthesis" paper, which introduces an innovative method for sampling out-of-distribution (OOD) data in the feature space to create more robust in-distribution (ID) image classification and object detection models. Delve into the intricacies of the VOS approach, including its high-level explanation, alternative synthesis methods, uncertainty loss components, and inference-time OOD detection. Gain insights into the step-by-step implementation, results, computational costs, and visualizations of this cutting-edge technique for improving model generalization and OOD awareness.

Syllabus

Intro to the OOD problem
High-level VOS explanation
Alternative synthesis approach GANs
Diving deeper into the method
Uncertainty loss component
Inference-time OOD detection
Method step-by-step overview
Results
Computational cost
Ablations, visualization
Outro


Taught by

Aleksa Gordić - The AI Epiphany

Related Courses

Computer Vision: The Fundamentals
University of California, Berkeley via Coursera
Detección de objetos
Universitat Autònoma de Barcelona (Autonomous University of Barcelona) via Coursera
Deep Learning Summer School
Independent
Deep Learning in Computer Vision
Higher School of Economics via Coursera
Computer Vision and Image Analysis
Microsoft via edX