Shimurian Analogs of Barsotti-Tate Groups
Offered By: Institut des Hautes Etudes Scientifiques (IHES) via YouTube
Course Description
Overview
Explore a comprehensive lecture on Shimurian analogs of Barsotti-Tate groups delivered by Vladimir Drinfeld from the University of Chicago. Begin with a review of Grothendieck's concept of n-truncated Barsotti-Tate groups and their formation of an algebraic stack over integers. Delve into the challenges of providing an illuminating description of reductions modulo powers of p and constructing analogs related to general Shimura varieties with good reduction at p. Examine conjectures addressing these problems, which have been proven by Z. Gardner, K. Madapusi, and A. Mathew, including their development of a modern version of Dieudonné theory. Gain insights into advanced mathematical concepts and their applications in this 1-hour 18-minute presentation from the Institut des Hautes Etudes Scientifiques (IHES).
Syllabus
Vladimir Drinfeld - Shimurian analogs of Barsotti-Tate groups.
Taught by
Institut des Hautes Etudes Scientifiques (IHES)
Related Courses
Introduction to Mathematical ThinkingStanford University via Coursera Effective Thinking Through Mathematics
The University of Texas at Austin via edX Cryptography
University of Maryland, College Park via Coursera Математика для всех
Moscow Institute of Physics and Technology via Coursera Number Theory and Cryptography
University of California, San Diego via Coursera