YoVDO

V-JEPA: Revisiting Feature Prediction for Learning Visual Representations from Video

Offered By: Yannic Kilcher via YouTube

Tags

Computer Vision Courses Artificial Intelligence Courses Machine Learning Courses Deep Learning Courses Unsupervised Learning Courses Neural Networks Courses Representation Learning Courses

Course Description

Overview

Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Explore an in-depth explanation of V-JEPA (Video Joint Embedding Predictive Architecture), a novel method for unsupervised representation learning from video data. Delve into the predictive feature principle, the original JEPA architecture, and the V-JEPA concept and architecture. Examine experimental results and qualitative evaluation through decoding. Learn how this approach, developed by Meta AI researchers, achieves impressive performance on both motion and appearance-based tasks using only latent representation prediction as an objective function. Gain insights into the potential of this technique for advancing unsupervised learning in computer vision and its implications for future AI developments.

Syllabus

- Intro
- Predictive Feature Principle
- Weights & Biases course on Structured LLM Outputs
- The original JEPA architecture
- V-JEPA Concept
- V-JEPA Architecture
- Experimental Results
- Qualitative Evaluation via Decoding


Taught by

Yannic Kilcher

Related Courses

From Graph to Knowledge Graph – Algorithms and Applications
Microsoft via edX
Social Network Analysis
Indraprastha Institute of Information Technology Delhi via Swayam
Stanford Seminar - Representation Learning for Autonomous Robots, Anima Anandkumar
Stanford University via YouTube
Unsupervised Brain Models - How Does Deep Learning Inform Neuroscience?
Yannic Kilcher via YouTube
Emerging Properties in Self-Supervised Vision Transformers - Facebook AI Research Explained
Yannic Kilcher via YouTube