Using Chaos to Characterize a Programmable Analog Quantum Simulator
Offered By: Simons Institute via YouTube
Course Description
Overview
Explore a 38-minute lecture by Adam Shaw from Caltech on using chaos to characterize programmable analog quantum simulators. Delve into the study of Rydberg atom arrays executing time-independent Hamiltonian dynamics, uncovering phenomena like the emergence of random behavior from deterministic evolution. Learn about fidelity estimation techniques for preparing large-scale entangled states and discover a new method for learning experimentally compatible noise models directly from many-body data. Examine the extension of benchmarking to systems with up to 60 atoms, entering a realm where exact classical simulation becomes impractical. Investigate a novel proxy for experimental mixed state entanglement that is comparable across quantum platforms and may reflect the classical complexity of quantum simulation. Gain insights into the characterization of analog quantum systems and their potential applications in solving specific problems more efficiently than universal quantum computers.
Syllabus
Using chaos to characterize a programmable analog quantum simulator
Taught by
Simons Institute
Related Courses
Topics in Nonlinear DynamicsNPTEL via YouTube Topics in Nonlinear Dynamics
NPTEL via YouTube Hamiltonian Systems Introduction - Why Study Them?
Ross Dynamics Lab via YouTube Stability of Periodic Orbits - Floquet Theory - Stable and Unstable Invariant Manifolds
Ross Dynamics Lab via YouTube A Theory of Trotter Error
Simons Institute via YouTube