Using Cellular IoT for Predictive Maintenance
Offered By: Nordic Semiconductor via YouTube
Course Description
Overview
Explore the potential of cellular IoT technology and embedded machine learning for developing predictive maintenance applications in this 47-minute webinar. Discover how to reduce costs and downtime by predicting failures and scheduling maintenance proactively. Gain insights into various Low Power Wide Area Network technologies, the current cellular IoT landscape, coverage, rollout, and future prospects. Understand the distinctions between low-power cellular IoT and Cat 1 bis, and their specific applications. The webinar covers topics such as the LPWAN landscape, LTE-M and NB-IoT coverage, cellular evolution from 2G to 5G, types of maintenance, benefits of predictive maintenance, considerations for implementing machine learning, and power consumption comparisons. Includes a Q&A session and offers access to downloadable presentation materials.
Syllabus
Practicalities and agenda
Introduction
Current LPWAN Landscape
LTE-M and NB-IoT Coverage Map
LTE IoT Technologies overview
Are Cat 1 bis suitable for massive IoT deployments?
Cellular evolution 2G to 5G
LTE categories evolution
What will happen with 2G/3G/4G
Different types of maintenance
Predictive maintenance overview
Where would it make sense to use predictive maintenance?
Why use cellular IoT for predictive maintenance?
Process data on the cloud or device side?
What to consider when implementing ML
Benefits of using ML in predictive maintenance
Cellular radio power consumption
Break-even comparison - LTE vs. CPU
The advantages of nRF9160 SiP
Q&A
Taught by
Nordic Semiconductor
Related Courses
Introduction aux réseaux cellulairesInstitut Mines-Télécom via Independent À la découverte des télécommunications
Institut Mines-Télécom via France Université Numerique Redes de difracción en comunicaciones ópticas
Universitat Politècnica de València via edX Tecnologie Digitali per la Comunicazione
University of Naples Federico II via Federica Fundamentos TIC para profesionales de negocios: Desarrollo de Software
Universitat Politècnica de València via edX