YoVDO

TC-GNN - Bridging Sparse GNN Computation and Dense Tensor Cores on GPUs

Offered By: USENIX via YouTube

Tags

USENIX Annual Technical Conference Courses PyTorch Courses CUDA Courses

Course Description

Overview

Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Explore a groundbreaking conference talk on accelerating Graph Neural Networks (GNNs) using GPU Tensor Core Units (TCUs). Discover TC-GNN, the first GNN acceleration framework that reconciles sparse GNN computation with high-performance dense TCUs. Learn about the novel sparse graph translation technique and effective CUDA core and TCU collaboration design that enables full utilization of GPU resources. Understand how this innovative approach achieves an average 1.70× speedup over the state-of-the-art DGL framework across various models and datasets. Gain insights into the challenges of GNN performance due to sparse and irregular graph-based operations, and how TC-GNN addresses these issues. Presented by researchers from the University of California, Santa Barbara, this 18-minute talk from USENIX ATC '23 offers valuable knowledge for those interested in graph-based machine learning and GPU optimization techniques.

Syllabus

USENIX ATC '23 - TC-GNN: Bridging Sparse GNN Computation and Dense Tensor Cores on GPUs


Taught by

USENIX

Related Courses

Amazon DynamoDB - A Scalable, Predictably Performant, and Fully Managed NoSQL Database Service
USENIX via YouTube
Faasm - Lightweight Isolation for Efficient Stateful Serverless Computing
USENIX via YouTube
AC-Key - Adaptive Caching for LSM-based Key-Value Stores
USENIX via YouTube
The Future of the Past - Challenges in Archival Storage
USENIX via YouTube
A Decentralized Blockchain with High Throughput and Fast Confirmation
USENIX via YouTube