YoVDO

Confidential Computing within an AI Accelerator

Offered By: USENIX via YouTube

Tags

USENIX Annual Technical Conference Courses Hardware Security Courses Data Encryption Courses Trusted Execution Environment Courses Confidential Computing Courses

Course Description

Overview

Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Explore a groundbreaking conference talk from USENIX ATC '23 that introduces IPU Trusted Extensions (ITX), a set of hardware extensions enabling trusted execution environments in Graphcore's AI accelerators. Delve into the innovative approach to confidential computing within AI hardware, offering strong confidentiality and integrity guarantees with minimal performance impact. Learn how ITX isolates workloads from untrusted hosts, ensures data and model encryption, and incorporates a hardware root-of-trust for attestation and trusted execution orchestration. Discover the on-chip programmable cryptographic engines that provide authenticated encryption at PCIe bandwidth. Gain insights into the accompanying software developments, including compiler and runtime extensions supporting multi-party training without CPU-based TEEs. Examine the experimental implementation of ITX in Graphcore's GC200 IPU, taped out at TSMC's 7nm node, and its impressive performance results showing less than 5% overhead and up to 17x better performance compared to CPU-based confidential computing systems using AMD SEV-SNP.

Syllabus

USENIX ATC '23 - Confidential Computing within an AI Accelerator


Taught by

USENIX

Related Courses

Amazon DynamoDB - A Scalable, Predictably Performant, and Fully Managed NoSQL Database Service
USENIX via YouTube
Faasm - Lightweight Isolation for Efficient Stateful Serverless Computing
USENIX via YouTube
AC-Key - Adaptive Caching for LSM-based Key-Value Stores
USENIX via YouTube
The Future of the Past - Challenges in Archival Storage
USENIX via YouTube
A Decentralized Blockchain with High Throughput and Fast Confirmation
USENIX via YouTube