Use Less For-Loops, Use More Vectorization - Improving Code Efficiency
Offered By: Samuel Chan via YouTube
Course Description
Overview
Learn to optimize Python code by replacing for-loops with vectorization techniques in this 19-minute video tutorial. Explore how to refactor numerical problems, particularly those using the Accumulator Pattern, using numpy's vectorized operations implemented in C. Discover how this approach leads to more concise, efficient, and significantly faster code. Gain insights into stopping unnecessarily slow code resulting from habit and familiarity with traditional for-loops. Access a code sample and find a link to a related video on membership tests using set intersections for further learning.
Syllabus
Use less for-loops, use more vectorization
Taught by
Samuel Chan
Related Courses
Artificial Intelligence for RoboticsStanford University via Udacity Intro to Computer Science
University of Virginia via Udacity Design of Computer Programs
Stanford University via Udacity Web Development
Udacity Programming Languages
University of Virginia via Udacity