YoVDO

Urs Lang - Combinatorial Dimension and Higher-Rank Hyperbolicity

Offered By: Applied Algebraic Topology Network via YouTube

Tags

Geometric Group Theory Courses Algebraic Topology Courses

Course Description

Overview

Explore the concept of combinatorial dimension and higher-rank hyperbolicity in this 57-minute lecture by Urs Lang. Delve into Dress's characterization of metric spaces with combinatorial dimension at most n using a 2(n+1)-point inequality. Examine a relaxed version of this inequality, termed (n,δ)-hyperbolicity, which generalizes Gromov's quadruple definition of δ-hyperbolicity. Learn about the properties of (n,δ)-hyperbolic spaces, including the slim (n+1)-simplex property. Discover connections to recent developments in geometric group theory, including applications to Helly groups and hierarchically hyperbolic groups. Based on joint work with Martina Jørgensen, this talk provides insights into the intersection of metric geometry and group theory.

Syllabus

Urs Lang (2/3/23): Combinatorial dimension and higher-rank hyperbolicity


Taught by

Applied Algebraic Topology Network

Related Courses

Introduction to Algebraic Topology (Part-I)
Indian Institute of Technology Bombay via Swayam
Introduction to Algebraic Topology (Part-II)
NPTEL via Swayam
Intro to the Fundamental Group - Algebraic Topology with Tom Rocks Maths
Dr Trefor Bazett via YouTube
Neural Sense Relations and Consciousness - A Diagrammatic Approach
Models of Consciousness Conferences via YouTube
Classification of 2-Manifolds and Euler Characteristic - Differential Geometry
Insights into Mathematics via YouTube