Urs Lang - Combinatorial Dimension and Higher-Rank Hyperbolicity
Offered By: Applied Algebraic Topology Network via YouTube
Course Description
Overview
Explore the concept of combinatorial dimension and higher-rank hyperbolicity in this 57-minute lecture by Urs Lang. Delve into Dress's characterization of metric spaces with combinatorial dimension at most n using a 2(n+1)-point inequality. Examine a relaxed version of this inequality, termed (n,δ)-hyperbolicity, which generalizes Gromov's quadruple definition of δ-hyperbolicity. Learn about the properties of (n,δ)-hyperbolic spaces, including the slim (n+1)-simplex property. Discover connections to recent developments in geometric group theory, including applications to Helly groups and hierarchically hyperbolic groups. Based on joint work with Martina Jørgensen, this talk provides insights into the intersection of metric geometry and group theory.
Syllabus
Urs Lang (2/3/23): Combinatorial dimension and higher-rank hyperbolicity
Taught by
Applied Algebraic Topology Network
Related Courses
An Introduction to Hyperbolic GeometryIndian Institute of Technology Kanpur via Swayam Searching for Hyperbolicity
Joint Mathematics Meetings via YouTube Discrete Homotopy Theory and Applications
Applied Algebraic Topology Network via YouTube Shmuel Weinberger - PH(X^Y) and the Geometry of Function Spaces
Applied Algebraic Topology Network via YouTube From Trees to Barcodes and Back Again - Combinatorial and Geometric Perspectives
Applied Algebraic Topology Network via YouTube