Unpacking Three Types of Feature Stores - MLOps Podcast
Offered By: MLOps.community via YouTube
Course Description
Overview
Explore a comprehensive podcast episode featuring Simba Khadder, Founder & CEO of Featureform, as he delves into the evolution of feature stores and their intersection with vector stores in machine learning and LLMs. Learn about embeddings, recommender systems, and the importance of personalization in improving LLM prompts. Gain insights into the distinctions between feature and vector stores, and their roles in streamlining ML workflows. Discover the latest challenges and innovations in MLOps, including discussions on scalability, the MLOps vs LLMOps debate, and the impact of feature store bundling. Understand the complexities of ML lifecycle challenges, the adoption of frameworks like DSPy, and the future of data science in AI development.
Syllabus
[] Simba's preferred coffee
[] Takeaways
[] Coining the term 'Embedding'
[] Dual Tower Recommender System
[] Complexity vs Reliability in AI
[] Vector Stores and Feature Stores
[] Value of Data Scientists
[] Scalability vs Quick Solutions
[] MLOps vs LLMOps Debate
[] Feature Stores' current landscape
[] ML lifecycle challenges and tools
[] Feature Stores bundling impact
[] Feature Stores and BigQuery
[] Virtual vs Literal Feature Store
[] Hadoop Community Challenges
[] LLM data lifecycle challenges
[] Personalization in prompting usage
[] Contextualizing company variables
[] DSPy framework adoption insights
[] Wrap up
Taught by
MLOps.community
Related Courses
Introduction to Recommender SystemsUniversity of Minnesota via Coursera Text Retrieval and Search Engines
University of Illinois at Urbana-Champaign via Coursera Machine Learning: Recommender Systems & Dimensionality Reduction
University of Washington via Coursera Java Programming: Build a Recommendation System
Duke University via Coursera Introduction to Recommender Systems: Non-Personalized and Content-Based
University of Minnesota via Coursera