Underspecification Presents Challenges for Credibility in Modern Machine Learning - Paper Explained
Offered By: Yannic Kilcher via YouTube
Course Description
Overview
Explore a comprehensive analysis of underspecification in machine learning pipelines through this 59-minute video lecture. Delve into the challenges posed by overparameterized deep learning models and their impact on out-of-distribution performance. Examine real-world examples from computer vision, medical imaging, natural language processing, clinical risk prediction, and medical genomics. Learn about stress tests, theoretical models, and practical applications in epidemiology, ImageNet-C, and BERT models. Gain insights into the importance of addressing underspecification for deploying ML models in real-world domains and understand its implications for model stability and behavior.
Syllabus
- Into & Overview
- Underspecification of ML Pipelines
- Stress Tests
- Epidemiological Example
- Theoretical Model
- Example from Medical Genomics
- ImageNet-C Example
- BERT Models
- Conclusion & Comments
Taught by
Yannic Kilcher
Related Courses
Introduction to Artificial IntelligenceStanford University via Udacity Natural Language Processing
Columbia University via Coursera Probabilistic Graphical Models 1: Representation
Stanford University via Coursera Computer Vision: The Fundamentals
University of California, Berkeley via Coursera Learning from Data (Introductory Machine Learning course)
California Institute of Technology via Independent