YoVDO

Underspecification Presents Challenges for Credibility in Modern Machine Learning - Paper Explained

Offered By: Yannic Kilcher via YouTube

Tags

Machine Learning Courses Data Science Courses Computer Vision Courses Medical Imaging Courses

Course Description

Overview

Explore a comprehensive analysis of underspecification in machine learning pipelines through this 59-minute video lecture. Delve into the challenges posed by overparameterized deep learning models and their impact on out-of-distribution performance. Examine real-world examples from computer vision, medical imaging, natural language processing, clinical risk prediction, and medical genomics. Learn about stress tests, theoretical models, and practical applications in epidemiology, ImageNet-C, and BERT models. Gain insights into the importance of addressing underspecification for deploying ML models in real-world domains and understand its implications for model stability and behavior.

Syllabus

- Into & Overview
- Underspecification of ML Pipelines
- Stress Tests
- Epidemiological Example
- Theoretical Model
- Example from Medical Genomics
- ImageNet-C Example
- BERT Models
- Conclusion & Comments


Taught by

Yannic Kilcher

Related Courses

Introduction to Artificial Intelligence
Stanford University via Udacity
Computer Vision: The Fundamentals
University of California, Berkeley via Coursera
Computational Photography
Georgia Institute of Technology via Coursera
Einführung in Computer Vision
Technische Universität München (Technical University of Munich) via Coursera
Introduction to Computer Vision
Georgia Institute of Technology via Udacity