Algebraic Perspectives of Persistence
Offered By: Hausdorff Center for Mathematics via YouTube
Course Description
Overview
Explore the algebraic foundations of persistent homology in this 1-hour 27-minute lecture from the Hausdorff Trimester Program on Applied and Computational Algebraic Topology. Delve into the concept of persistence diagrams (barcodes) and their role in describing filtration homology. Examine the fundamental theorem stating that small input data changes result in minor persistence barcode alterations. Investigate a constructive algebraic approach to this theorem, offering a high level of generality and deeper insights into the field of computational topology.
Syllabus
Ulrich Bauer: Algebraic perspectives of Persistence
Taught by
Hausdorff Center for Mathematics
Related Courses
Introduction to Algebraic Topology (Part-I)Indian Institute of Technology Bombay via Swayam Introduction to Algebraic Topology (Part-II)
NPTEL via Swayam Intro to the Fundamental Group - Algebraic Topology with Tom Rocks Maths
Dr Trefor Bazett via YouTube Neural Sense Relations and Consciousness - A Diagrammatic Approach
Models of Consciousness Conferences via YouTube Classification of 2-Manifolds and Euler Characteristic - Differential Geometry
Insights into Mathematics via YouTube