Geometric Probabilistic Models - Tutorial 4
Offered By: Uncertainty in Artificial Intelligence via YouTube
Course Description
Overview
Explore geometric probabilistic models in this comprehensive 2.5-hour tutorial from the Uncertainty in Artificial Intelligence conference. Delve into the intersection of geometric deep learning and data-efficient probabilistic modeling techniques, focusing on Gaussian processes and Bayesian neural networks. Learn how these methods enable uncertainty quantification in geometry-compatible ways, crucial for applications in drug design, robotics, and molecular optimization. Discover the theory and practical implementation of these techniques through software demonstrations, and examine emerging applications where data efficiency and geometric properties are paramount. Access accompanying slides to enhance your understanding of this rapidly developing field at the forefront of AI research.
Syllabus
UAI 2024 Tutorial 4: Geometric Probabilistic Models
Taught by
Uncertainty in Artificial Intelligence
Related Courses
Data Science: Inferential Thinking through SimulationsUniversity of California, Berkeley via edX Decision Making Under Uncertainty: Introduction to Structured Expert Judgment
Delft University of Technology via edX Probabilistic Deep Learning with TensorFlow 2
Imperial College London via Coursera Agent Based Modeling
The National Centre for Research Methods via YouTube Sampling in Python
DataCamp