Learning from Low Rank Tensor Data: A Random Tensor Theory Perspective - UAI 2023 Oral Session 4
Offered By: Uncertainty in Artificial Intelligence via YouTube
Course Description
Overview
Explore a 22-minute conference talk from the Uncertainty in Artificial Intelligence (UAI) 2023 Oral Session 4 that delves into learning from low-rank tensor data through a random tensor theory perspective. Gain insights into the theoretical analysis of both supervised and unsupervised learning scenarios using simplified data models with underlying low-rank tensor structures. Discover the analytical quantification of performance gains achieved by exploiting low-rank structures for denoising in Ridge classification, compared to treating data as vectors. Examine the extension of this analysis to clustering contexts, understanding the exact performance differences between tensor methods and standard vector-based approaches. Access the presentation slides to enhance your comprehension of this cutting-edge research in machine learning and data analysis.
Syllabus
UAI 2023 Oral Session 4: Learning from Low Rank Tensor Data: A Random Tensor Theory Perspective
Taught by
Uncertainty in Artificial Intelligence
Related Courses
Machine Learning: Unsupervised LearningBrown University via Udacity Practical Predictive Analytics: Models and Methods
University of Washington via Coursera Поиск структуры в данных
Moscow Institute of Physics and Technology via Coursera Statistical Machine Learning
Carnegie Mellon University via Independent FA17: Machine Learning
Georgia Institute of Technology via edX