YoVDO

Explainable ML in the Wild - When Not to Trust Your Explanations

Offered By: Association for Computing Machinery (ACM) via YouTube

Tags

ACM FAccT Conference Courses Machine Learning Courses AI Ethics Courses

Course Description

Overview

Dive into a comprehensive tutorial on the limitations and potential pitfalls of explainable machine learning. Explore real-world scenarios where explanations may be unreliable, presented by experts Shalmali Joshi, Chirag Agarwal, and Himabindu Lakkaraju from Harvard. Learn to critically evaluate and interpret machine learning explanations, understanding when to exercise caution in trusting them. Gain insights into the challenges of implementing explainable ML in practical applications and discover strategies for more robust and trustworthy AI systems. This 91-minute session, part of the FAccT 2021 conference, equips data scientists, researchers, and AI practitioners with essential knowledge for navigating the complex landscape of explainable machine learning in real-world contexts.

Syllabus

Tutorial: Explainable ML in the Wild: When Not to Trust Your Explanations


Taught by

ACM FAccT Conference

Related Courses

Introduction to Artificial Intelligence
Stanford University via Udacity
Natural Language Processing
Columbia University via Coursera
Probabilistic Graphical Models 1: Representation
Stanford University via Coursera
Computer Vision: The Fundamentals
University of California, Berkeley via Coursera
Learning from Data (Introductory Machine Learning course)
California Institute of Technology via Independent