YoVDO

Rethinking the Truly Unsupervised Image-to-Image Translation - Paper Explained

Offered By: Yannic Kilcher via YouTube

Tags

Machine Learning Courses Computer Vision Courses Image Processing Courses Image Reconstruction Courses

Course Description

Overview

Explore a comprehensive video explanation of the TUNIT paper, which introduces a novel approach to truly unsupervised image-to-image translation. Delve into the innovative method that eliminates the need for paired images or domain labels, allowing for fully unsupervised image translation from a source image to the style of one or multiple reference images. Learn about the joint training of a guiding network that provides style information and pseudo-labels. Follow the detailed breakdown of the architecture, including pseudo-label loss, encoder style contrastive loss, adversarial loss, generator style contrastive loss, and image reconstruction loss. Gain insights into the experimental results demonstrating the model's ability to separate domains and translate images effectively, even outperforming set-level supervised methods in semi-supervised settings.

Syllabus

- Intro & Overview
- Unsupervised Image-to-Image Translation
- Architecture Overview
- Pseudo-Label Loss
- Encoder Style Contrastive Loss
- Adversarial Loss
- Generator Style Contrastive Loss
- Image Reconstruction Loss
- Architecture Recap
- Full Loss
- Experiments


Taught by

Yannic Kilcher

Related Courses

Fundamentals of Biomedical Imaging: Magnetic Resonance Imaging (MRI)
École Polytechnique Fédérale de Lausanne via edX
Introduction to Deep Learning with Keras
DataCamp
Photoshop CC 2015 One-on-One: Advanced
LinkedIn Learning
Photoshop CC 2017 One-on-One: Advanced
LinkedIn Learning
Photoshop CC 2018 One-on-One: Advanced
LinkedIn Learning