Tropical Analog of the Hodge Conjecture for Smooth Algebraic Varieties Over Trivially Valued Fields
Offered By: IMSA via YouTube
Course Description
Overview
Explore a lecture on the tropical analog of the Hodge conjecture for smooth algebraic varieties over trivially valued fields, presented by Ryota Mikami from Kyoto University. Delve into the world of tropical geometry as a combinatorial shadow of algebraic geometry, and discover a novel approach to problems on cycle class maps. Learn about the main components of the proof, including a theorem for general "cohomology theories" developed by mathematicians like Quillen, a newly introduced tropical analog of Milnor K-theory, and explicit calculations of tropical cohomology of trivial line bundles using non-archimedean geometry. Gain insights into this complex mathematical topic and its implications for the field of algebraic geometry during this hour-long presentation.
Syllabus
Tropical Analog of the Hodge Conjecture for Smooth Algebraic Varieties Over Trivially Valued Fields
Taught by
IMSA
Related Courses
The Tropical Limit of String Theory and Feynman IntegralsInternational Centre for Theoretical Sciences via YouTube Geometry of Tropical Varieties with Applications - Lecture 3
International Centre for Theoretical Sciences via YouTube Tropical Geometry of Phylogenetic Tree Spaces
Applied Algebraic Topology Network via YouTube The Positive Grassmannian, the Amplituhedron, and Cluster Algebras
International Mathematical Union via YouTube Birational Geometry of Moduli Spaces via the Essential Skeleton
IMSA via YouTube